Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
OMICS ; 28(4): 170-181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621149

ABSTRACT

With their unusually large genome and particle sizes, giant viruses (GVs) defy the conventional definition of viruses. Although most GVs isolated infect unicellular protozoans, such as amoeba, studies in the last decade have established their much wider prevalence infecting most eukaryotic supergroups and some giant viral families with the potential to be human pathogens. Their complexity, almost autonomous life cycle, and enigmatic evolution necessitate the study of GVs. The accurate assessment of GV proteome is a veritable challenge. We have compared the coverage of global protein identification using different methods for GVs isolated in Mumbai, Mimivirus Bombay (MVB), Powai Lake Megavirus (PLMV), and Kurlavirus (KV), along with two previously studied GVs, Acanthamoeba polyphaga Mimivirus (APMV) and Marseillevirus (MV). Our study shows that the simultaneous use of in-gel and in-solution digestion methods can significantly increase the coverage of protein identification in the global proteome analysis of purified GV particles. Combining the two methods of analyses, we identified an additional 72 proteins in APMV and 114 in MV compared with what have been previously reported. Similarly, proteomes of MVB, PLMV, and KV were analyzed, and a total of 242 proteins in MVB, 287 proteins in PLMV, and 174 proteins in KV were identified. Our results suggest that a combined methodology of in-gel and in-solution methods is more efficient and opens up new avenues for innovation in global proteome analysis of GVs. Future planetary health research on GVs can benefit from consideration of a broader range of proteomics methodologies as illustrated by the present study.


Subject(s)
Giant Viruses , Proteome , Proteomics , Proteomics/methods , Giant Viruses/genetics , Giant Viruses/metabolism , Viral Proteins/metabolism
2.
J Mol Biol ; 435(17): 168188, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37380013

ABSTRACT

Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Mimiviridae , DNA , DNA Replication , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Uracil/metabolism , Mimiviridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...